Impacts of Work Function Variation and Line-Edge Roughness on TFET and FinFET Devices and 32-Bit CLA Circuits

نویسندگان

  • Chien-Ju Chen
  • Ming-Long Fan
  • Ching-Te Chuang
  • Steven A. Vitale
چکیده

In this paper, we analyze the variability of III-V homojunction tunnel FET (TFET) and FinFET devices and 32-bit carry-lookahead adder (CLA) circuit operating in near-threshold region. The impacts of the most severe intrinsic device variations including work function variation (WFV) and fin line-edge roughness (fin LER) on TFET and FinFET device Ion, Ioff, Cg, 32-bit CLA delay and power-delay product (PDP) are investigated and compared using 3D atomistic TCAD mixed-mode Monte-Carlo simulations and HSPICE simulations with look-up table based Verilog-A models calibrated with TCAD simulation results. The results indicate that WFV and fin LER have different impacts on device Ion and Ioff. Besides, at low operating voltage (<0.3 V), the CLA circuit delay and power-delay product (PDP) of TFET are significantly better than FinFET due to its better Ion and Cg,ave and their smaller variability. However, the leakage power of TFET CLA is larger than FinFET CLA due to the worse Ioff variability of TFET devices. OPEN ACCESS J. Low Power Electron. Appl. 2015, 5 102

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Circuit Densities in Epitaxially Defined FinFETs (EDFinFETs) over FinFETs

—FinFET technology is prone to suffer from Line Edge Roughness (LER) based VT variation with scaling. To address this, we proposed an Epitaxially Defined (ED) FinFET (EDFinFET) as an alternate to FinFET architecture for 10 nm node and beyond. We showed by statistical simulations that EDFinFET reduces LER based VT variability by 90% and overall variability by 59%. However, EDFinFET consists of w...

متن کامل

Design and Test of New Robust QCA Sequential Circuits

   One of the several promising new technologies for computing at nano-scale is quantum-dot cellular automata (QCA). In this paper, new designs for different QCA sequential circuits are presented. Using an efficient QCA D flip-flop (DFF) architecture, a 5-bit counter, a novel single edge generator (SEG) and a divide-by-2 counter are implemented. Also, some types of oscillators, a new edge-t...

متن کامل

A Life-Cycle Energy and Inventory Analysis of FinFET Integrated Circuits

The manufacturing of modern semiconductor devices involves a complex set of nanoscale fabrication processes that are energy and resource intensive. There is a need for a comprehensive analysis of environmental impacts when an innovative new manufacturing approach emerges for semiconductor circuits. FinFET devices, a special kind of quasi-planer double gate devices, have been introduced as the n...

متن کامل

Design and Simulation of a Modified 32-bit ROM-based Direct Digital Frequency Synthesizer on FPGA

This paper presents a modified 32-bit ROM-based Direct Digital Frequency Synthesizer (DDFS). Maximum output frequency of the DDFS is limited by the structure of the accumulator used in the DDFS architecture. The hierarchical pipeline accumulator (HPA) presented in this paper has less propagation delay time rather than the conventional structures. Therefore, it results in both higher maximum ope...

متن کامل

A High-Speed Dual-Bit Parallel Adder based on Carbon Nanotube ‎FET technology for use in arithmetic units

In this paper, a Dual-Bit Parallel Adder (DBPA) based on minority function using Carbon-Nanotube Field-Effect Transistor (CNFET) is proposed. The possibility of having several threshold voltage (Vt) levels by CNFETs leading to wide use of them in designing of digital circuits. The main goal of designing proposed DBPA is to reduce critical path delay in adder circuits. The proposed design positi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015